WORKSHOP ON THE EMBEDDED GENERATION FRAMEWORK IN THE NIGERIAN ELECTRICITY SUPPLY INDUSTRY

15th November, 2012

The Concept of Embedded Generation – Prospects and Challenges

Dolapo Kukoyi, Partner (Power)
1. Concept of Embedded Generation
2. Nigerian Power Sector Outlook
3. Prospects
4. Challenges
The Concept of Embedded Generation (EG)
Industry Definition of EG

Also known as:

- Distributed Generation
- Onsite Generation
- Dispersed Generation
- Decentralised Generation
- Decentralised Energy

Embedded Generation basically is power generated on a smaller scale, not centrally dispatched via the grid and directly connected to a distribution network or customer loads.
Industry Definition of EG

<table>
<thead>
<tr>
<th>Country</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Australia</td>
<td>Connected to the distribution network (up to 132 KV) which is capable of supplying customer load directly</td>
</tr>
<tr>
<td>France</td>
<td>Connected to the distribution network, capable of supplying customer loads directly</td>
</tr>
<tr>
<td>Germany</td>
<td>Used mainly for sun, wind and small hydro projects</td>
</tr>
<tr>
<td>Greece</td>
<td>Connected to the distribution system not centrally planned or dispatched</td>
</tr>
<tr>
<td>India</td>
<td>New renewable energy sources (up to 11KV)</td>
</tr>
<tr>
<td>Netherlands</td>
<td>Owned by utilities, industry or a combination (up to 150KV)</td>
</tr>
<tr>
<td>United Kingdom</td>
<td>Connected to a distribution system (up to 132KV)</td>
</tr>
</tbody>
</table>

Source: Report of CIRED Working Group No 4 on Dispersed Generation.
Local Industry definition of EG

The generation of electricity that is directly connected to and evacuated through a distribution system which is connected to a transmission network operated by a System Operations Licensee – *NERC Regulations for Embedded Generation issued in March 2012*
Nigerian Power Sector Outlook
Nigerian Power Sector Outlook – National

- Power Sector Road Map aspiration – 40,000 MW by 2020
- Presidential Taskforce on Power – 30,669 MW by 2020
- Daily Peak Delivery – 4300 MW (±)
- 32 Licensed On-Grid IPPs with a total installed capacity of 1899 MW – May 2012; total licensed capacity 12,324 MW
- 20 Licensed Off-Grid IPPs with a total installed capacity of 111.15 MW (Estimated); total licensed capacity 274.5 MW
- 3 EG Licenses with a total licensed capacity of 374 MW – All Non-Operational
- 10 NIPP Projects with a total installed capacity of 750 MW – May 2012; total licensed capacity 4,180 MW
- 12 FGN Hydro and Thermal Stations with a total installed capacity of 6,504 MW – May 2012; total licensed capacity 10,552 MW (Mambilla, Zungeru and Gurara inclusive)
- Total estimated generating (operating and non operating) capacity – 27,704.5 MW
Nigerian Power Sector Outlook – Hurdles

- Access to gas, gas prices and gas supply framework
- Transmission Network – Losses and dilapidated Infrastructure
- Bulk Trader – Credibility, Standard PPA Template
- Maintenance/Turnaround of existing FGN Discos
- Funding for NIPP Projects
- World Bank Partial Risk Guarantee
- Financing for IPPs
40,000 MW in the next 7 years ?????
Prospects of EG
Prospects - National

- Achieve National Aspirations within a shorter time.

- Reduced technical losses because of proximity to the network

- Discos have access to more power supply = more cash flows + more customers willing to pay

- Opportunity for Discos to improve distribution network (either by themselves or by the EGs) and performance

- Deepen the electricity market – capacity, standards, contracts and more bankable deals

- IPPs with excess power within a distribution network are able to sell their excess power to Discos

- Industrial consumers can have the option of choosing the most suitable suppliers for them

- Introduces competition in the market
Prospects - Sub-National

- States are able to achieve power supply aspirations within their borders without constitutional constraints
- State investment in and ownership of Discos could work to State advantage
- Power to be supplied to strategic state infrastructure and institutions: Water Plants, Hospitals, Schools, Courts, Offices, Street lighting etc
- More Industrial clusters and businesses with better power supply = more business, stronger economy, perhaps more willing tax payers
Prospects - Sub – National – Lagos State

- Population as at 2012 – 20.5 million
- 2,000 industrial complexes, 10,000 commercial ventures and 22 industrial estates.
- Requires over 12,000 MW of electricity
Prospects - Sub – National – Lagos State

<table>
<thead>
<tr>
<th>No</th>
<th>Area</th>
<th>No. of Locations</th>
<th>No. of Sectors</th>
<th>Installed Capacity (MW)</th>
<th>Number of Generators</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Somolu Printing Community</td>
<td>271</td>
<td>15</td>
<td>11</td>
<td>300</td>
</tr>
<tr>
<td>2</td>
<td>Matori Industrial Estate</td>
<td>148</td>
<td>20</td>
<td>40</td>
<td>105</td>
</tr>
<tr>
<td>3</td>
<td>Ilupeju Industrial Estate</td>
<td>144</td>
<td>18</td>
<td>25</td>
<td>105</td>
</tr>
<tr>
<td>4</td>
<td>Ikorodu Industrial Estate</td>
<td>11</td>
<td>4</td>
<td>135</td>
<td>31</td>
</tr>
<tr>
<td>5</td>
<td>Lagos Island (broad street & Marina only)</td>
<td>599</td>
<td>25</td>
<td>100</td>
<td>252</td>
</tr>
<tr>
<td>6</td>
<td>Ikeja GRA</td>
<td>789</td>
<td>31</td>
<td>68</td>
<td>804</td>
</tr>
<tr>
<td>7</td>
<td>Oba Akran</td>
<td>516</td>
<td>32</td>
<td>69</td>
<td>548</td>
</tr>
<tr>
<td>8</td>
<td>Agidingbi</td>
<td>645</td>
<td>36</td>
<td>70</td>
<td>820</td>
</tr>
<tr>
<td>9</td>
<td>Omole 1</td>
<td>936</td>
<td>10</td>
<td>13</td>
<td>89</td>
</tr>
<tr>
<td>10</td>
<td>Omole 11</td>
<td>1531</td>
<td>12</td>
<td>43</td>
<td>2410</td>
</tr>
<tr>
<td>11</td>
<td>Dolphin Estate</td>
<td>1544</td>
<td>12</td>
<td>22</td>
<td>1089</td>
</tr>
</tbody>
</table>

Source: Presentation on Power Sector Development: Lagos State Economic Summit April 23-25 2012
Prospects - Power Developers/IPP

- IPPs can sell excess power to Discos
- Cost reflective tariff (different fuel sources and cost of building infrastructure considered)
- Potential market for power supply to Housing Estates, Industrial Estates/clusters, State Governments and Telecom Installations
- Option to also supply power to eligible customers
- No distribution lines ordinarily required when connected to a Disco
- No transmission costs
- No distribution licence required
Challenges
Potential Challenges

- Distribution Network constraints – good or bad thing?
- Credibility/Liquidity of Discos
- Regulatory, Contractual Framework & Capacity
- Eligible Customers – Classes of customers currently undefined, could this be a win-win situation for the Discos?
- Procurement Process – enabler or clog in the wheel?
- Cost Recovery – how will this be structured?
- Licensing hurdles for those with excess power – could there be another way out?
Conclusion

- Embedded Generation evidently has a lot of potential
- NERC has taken the initial step with the regulations
- Stakeholders need to make concerted efforts to build the legal, regulatory, contractual and financing framework
Thank You for Listening